§ 1065.225

- (ii) For multiplying total raw exhaust flow with batch-sampled concentrations.
- (iii) For calculating the dilution air flow for background correction as described in §1065.667.
- (2) In the following cases, you may use a fuel flow meter signal that does not give the actual value of raw exhaust, as long as it is linearly proportional to the exhaust molar flow rate's actual calculated value:
- (i) For feedback control of a proportional sampling system, such as a partial-flow dilution system.
- (ii) For multiplying with continuously sampled gas concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake-specific fuel consumption and fuel consumed.
- (b) Component requirements. We recommend that you use a fuel flow meter that meets the specifications in Table 1 of §1065.205. We recommend a fuel flow meter that measures mass directly, such as one that relies on gravimetric or inertial measurement principles. This may involve using a meter with one or more scales for weighing fuel or using a Coriolis meter. Note that your overall system for measuring fuel flow must meet the linearity verification in §1065.307 and the calibration and verifications in §1065.320.
- (c) Recirculating fuel. In any fuel-flow measurement, account for any fuel that bypasses the engine or returns from the engine to the fuel storage tank.
- (d) Flow conditioning. For any type of fuel flow meter, condition the flow as needed to prevent wakes, eddies, circulating flows, or flow pulsations from affecting the accuracy or repeatability of the meter. You may accomplish this by using a sufficient length of straight tubing (such as a length equal to at least 10 pipe diameters) or by using specially designed tubing bends. straightening fins, or pneumatic pulsation dampeners to establish a steady and predictable velocity profile upstream of the meter. Condition the flow as needed to prevent any gas bub-

bles in the fuel from affecting the fuel meter.

[70 FR 40516, July 13, 2005, as amended at 73 FR 37300, June 30, 2008; 76 FR 57441, Sept. 15, 2011]

§ 1065.225 Intake-air flow meter.

- (a) Application. You may use an intake-air flow meter in combination with a chemical balance of fuel, inlet air, and exhaust to calculate raw exhaust flow as described in §1065.655(e) and (f), as follows:
- (1) Use the actual value of calculated raw exhaust in the following cases:
- (i) For multiplying raw exhaust flow rate with continuously sampled concentrations.
- (ii) For multiplying total raw exhaust flow with batch-sampled concentrations.
- (iii) For verifying minimum dilution ratio for PM batch sampling as described in §1065.546.
- (iv) For calculating the dilution air flow for background correction as described in §1065.667.
- (2) In the following cases, you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as long as it is linearly proportional to the exhaust flow rate's actual calculated value:
- (i) For feedback control of a proportional sampling system, such as a partial-flow dilution system.
- (ii) For multiplying with continuously sampled gas concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake-specific fuel consumption and fuel consumed.
- (b) Component requirements. We recommend that you use an intake-air flow meter that meets the specifications in Table 1 of §1065.205. This may include a laminar flow element, an ultrasonic flow meter, a subsonic venturi, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. Note that your overall system for measuring intake-air flow must meet the linearity verification in §1065.307 and the calibration in §1065.325.
- (c) Flow conditioning. For any type of intake-air flow meter, condition the

Environmental Protection Agency

flow as needed to prevent wakes, eddies, circulating flows, or flow pulsations from affecting the accuracy or repeatability of the meter. You may accomplish this by using a sufficient length of straight tubing (such as a length equal to at least 10 pipe diameters) or by using specially designed tubing bends, orifice plates or straightening fins to establish a predictable velocity profile upstream of the meter.

[70 FR 40516, July 13, 2005, as amended at 76 FR 57442, Sept. 15, 2011;79 FR 23760, Apr. 28, 2014]

§ 1065.230 Raw exhaust flow meter.

- (a) Application. You may use measured raw exhaust flow, as follows:
- (1) Use the actual value of calculated raw exhaust in the following cases:
- (i) Multiply raw exhaust flow rate with continuously sampled concentrations.
- (ii) Multiply total raw exhaust with batch sampled concentrations.
- (2) In the following cases, you may use a raw exhaust flow meter signal that does not give the actual value of raw exhaust, as long as it is linearly proportional to the exhaust flow rate's actual calculated value:
- (i) For feedback control of a proportional sampling system, such as a partial-flow dilution system.
- (ii) For multiplying with continuously sampled gas concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake-specific fuel consumption and fuel consumed.
- (b) Component requirements. We recommend that you use a raw-exhaust flow meter that meets the specifications in Table 1 of §1065.205. This may involve using an ultrasonic flow meter, a subsonic venturi, an averaging Pitot tube, a hot-wire anemometer, or other measurement principle. This would generally not involve a laminar flow element or a thermal-mass meter. Note that your overall system for measuring raw exhaust flow must meet the linearity verification in §1065.307 and the verifications calibration and in §1065.330. Any raw-exhaust meter must be designed to appropriately compensate for changes in the raw exhaust's thermodynamic, fluid, and compositional states.

- (c) Flow conditioning. For any type of raw exhaust flow meter, condition the flow as needed to prevent wakes, eddies, circulating flows, or flow pulsations from affecting the accuracy or repeatability of the meter. You may accomplish this by using a sufficient length of straight tubing (such as a length equal to at least 10 pipe diameters) or by using specially designed tubing bends, orifice plates or straightening fins to establish a predictable velocity profile upstream of the meter.
- (d) Exhaust cooling. You may cool raw exhaust upstream of a raw-exhaust flow meter, as long as you observe all the following provisions:
- (1) Do not sample PM downstream of the cooling.
- (2) If cooling causes exhaust temperatures above 202 °C to decrease to below 180 °C, do not sample NMHC downstream of the cooling for compressionignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or below 19 kW.
- (3) The cooling must not cause aqueous condensation.

[70 FR 40516, July 13, 2005, as amended at 79 FR 23761, Apr. 28, 2014]

§ 1065.240 Dilution air and diluted exhaust flow meters.

- (a) Application. Use a diluted exhaust flow meter to determine instantaneous diluted exhaust flow rates or total diluted exhaust flow over a test interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to calculate raw exhaust flow rates or total raw exhaust flow over a test interval.
- (b) Component requirements. We recommend that you use a diluted exhaust flow meter that meets the specifications in Table 1 of § 1065.205. Note that your overall system for measuring diluted exhaust flow must meet the linearity verification in § 1065.307 and the calibration and verifications in § 1065.340 and § 1065.341. You may use the following meters:
- (1) For constant-volume sampling (CVS) of the total flow of diluted exhaust, you may use a critical-flow venturi (CFV) or multiple critical-flow venturis arranged in parallel, a positive-displacement pump (PDP), a subsonic venturi (SSV), or an ultrasonic